Bogusław Guzik
ARTICLE

(Polish) PDF

ABSTRACT

The article points out some disadvantages of traditional (based on DEA methodology) procedure of estimating credit capacity which consists in solving CCR and BCC models and estimating a discriminant function where efficiency indicator is a dependent variable and inputs and outputs used in DEA models are independent variables. Since the main problems with this procedure are connected with discriminant function, the author suggests a procedure of credit capacity estimation which uses no discriminant function. The new method is based on DEA methodology, particularly on super-efficiency DEA models (SE-DEA models) with permitted benchmarks. Comparing the credit capacity indicator (here: ranking indicator) with cut-off points enables objects classification.

KEYWORDS

DEA, SE-CCR, credit capacity, DEA with permitted benchmarks

REFERENCES

[1] Altman E.I., [1968], Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, „The Journal of Finance”, 23, 4.

[2] Andersen P., Petersen N.C., [1993], A procedure for ranking efficient units in Data Envelopment Analysis, „Management Science”, 39, 10.

[3] Banker R.D., Charnes A., Cooper W.W., [1984], Some models for estimating technical and scale inefficiencies in data envelopment analysis, „Management Science”, 30.

[4] Banker R.D., Gilford J.L., [1988], A relative efficiency model for the evaluation of public health nurse productivity, Mellon University Mimeo, Cornegie.

[5] Charnes A., Cooper W.W., Rhodes E., [1978], Measuring the efficiency of decision making units, „European Journal of Operational Research”, 2.

[6] Cook W.D., Seiford L.M., [2009], Data envelopment analysis (DEA) – Thirty years on, „European Journal of Operational Research”, 192, 1.

[7] Chang E.W.I., Chiang Y.H., Tang B.S., [2007], Alternative approach to credit scoring by DEA: Evaluating borrowers with respect to PFI projects, „Building and Environment”, 42, 4.

[8] Emel A.B., Oral M., Reisman A., Yolalan R., [2003], A credit scoring approach for the commercial banking sector, „Socio-Economic Planning Sciences”, 37, 2.

[9] Feruś A., [2006], Zastosowanie metody DEA do określania poziomu ryzyka kredytowego przedsiębiorstw, „Bank i Kredyt”, 7.

[10] Gospodarowicz A., [2004], Możliwości wykorzystania metody DEA do oceny ryzyka kredytowego w kontekście Nowej Umowy Kapitałowej, w: Przestrzenno-czasowe modelowanie i prognozowanie zjawisk gospodarczych, (red. A. Zeliaś), Wyd. Akademii Ekonomicznej w Krakowie, Kraków.

[11] Hamrol M., Chodakowski J., [2008], Prognozowanie zagrożenia finansowego przedsiębiorstwa. Wartość predykcyjna polskich modeli analizy dyskryminacyjnej, Badania Operacyjne i Decyzje, 3. [12] Min J.H., Lee Q-C., [2008], A practical approach to credit scoring, „Expert System with Applications”, 35, 4.

[13] Paradi J.C., Asmild M., Simak P.C., [2004], Using DEA and worst practice DEA in credit risk evaluation, „Journal of Productivity Analysis”, 21.

[14] Truott M.D., Rai A., Zhang A., [1996], The pontential use of DEA for credit applicant acceptance system, „Computers and Operations Research”, 23, 4.

[15] Yeh Q.J., [1996], The application of data envelopment analysis in conjunction with financial ratios for bank performance evaluation, „Journal of Operational Research Society”, 47, 8.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0